Expand description
Empirical Mode Decomposition (EMD) for non-stationary signal analysis
EMD is a data-driven method for decomposing signals into Intrinsic Mode Functions (IMFs). Unlike wavelet transforms, EMD doesn’t require predefined basis functions and adapts to the local characteristics of the signal.
§Financial Applications
- Trend extraction: Separate long-term trends from short-term fluctuations
- Volatility decomposition: Multi-scale volatility analysis
- Cycle detection: Identify market cycles without assuming periodicity
- Noise removal: Extract market microstructure noise
- Regime identification: Detect changes in market dynamics
§EEMD Random Seed Configuration
The Ensemble EMD (EEMD) implementation supports configurable random seeds:
- Production use: Set
random_seed: Nonefor true randomness (default) - Testing/Research: Use
with_seed(seed)or setrandom_seed: Some(seed)for reproducibility
use iron_wave::transform::EEMD;
// For production - uses random seed
let eemd = EEMD::default();
// For testing/research - reproducible results
let eemd_reproducible = EEMD::default().with_seed(42);Modules§
- financial
- Financial-specific EMD analysis
Structs§
- EEMD
- Ensemble Empirical Mode Decomposition (EEMD) for improved robustness
- EMDConfig
- Configuration for EMD decomposition
- EMDResult
- EMD result containing all IMFs and the residue
- IMF
- Numerical tolerance for singularity detection in cubic spline interpolation
Functions§
- emd
- Perform Empirical Mode Decomposition